Global Product Certification since 1992

Advantages of Fiber Optic and Immunity to Electromagnetic Interference

advantages of fibre optic

Fiber optics are thin flexible glass wires (or, other transparent solids) used primarily in the telecommunications industry. Fiber optical wiring simplifies data communication.

In this article, we will explain the advantages of fiber optics and how they are immune to electromagnetic interferences, making it the ideal choice for signal/data transmission. Let us begin.

#1 Electromagnetic Interference Immunity

Electromagnetic Interference (EMI) is a common property of electromagnetism where electrical current is generated along magnetic fields as they move across conductors, which modifies the current flow. The interference happens with coaxial cables but not with fiber optic cables as the signal transmission occurs through light, and not current.

It opens the potential of fiber optic cable installation in places where EMI can block signal transmission. Fiber optics are ideal for data transmission between computers.

#2 Non-Conductive Design

Fiber optic cables are often non-conductive in nature as they do not contain metals. Such cables are ideal for indoor installation, and they are economical. The same for outdoor installation is expensive as they are created with enhanced wire strength to handle environmental hazards such as lighting. A workaround on this is to install protective devices around the cables to avoid electrical surges and eliminate ground loops.

The problem with metal cables is they become a good conductor of electricity. This can create signal transmission problems even with a subtle electrical power variation. The metal wires are created assuming that the ground has a uniform potential; however, in a realistic situation, the ground voltage potential differs when cables of different potential run between the same building or different buildings.

#3 Data Security

Optical fibers do not have an external magnetic field as the electromagnetic field is contained within the fiber. Without cutting the fiber, tapping the signal transfer is impossible. The signal transfer cannot be intercepted, and therefore, fiber optics are a secure way to transfer sensitive data and maintain data protection.

In comparison, metal cables contain magnetic fields and it is easier to tap into the signal transmission and leak data. The problem can be contained by shielding the wire, but shielding is not enough.

#4 Electrical Sparks

Usually, electrical points create sparks, and it becomes extremely dangerous to transmit signals in that situation, especially when the spark occurs in areas which have oil refineries and chemical plants as the air contains explosive vapours.

A small spark could lead to a huge explosion. Installing fiber optics makes sense as current do not pass through the cables, removing the potential of any explosion or other mishaps through electrical sparks.

#5 Bandwidth Potential

The capacity to transfer data at high speed over long distance is high with fiber optic cables. The cables do not possess an infinite bandwidth though. However, compared to coaxial cables, the bandwidth is higher.

The coaxial cables cover few MHz/km as bandwidth parameter which is less than the 400 MHz/km parameter of fiber optic cables. Do note these MHz/km are estimations and will vary with every cable.

#6 Installation

Wire cables with increased communication transmission capability are thicker and rigid, toughening up the process of installing them in buildings where special ducts must be created to install the wires.

Comparatively, the fiber optic cables are simpler to install because the wires are flexible and smaller. They can be installed along existing electric cables, and they will not pick up electromagnetic noise from other wires.

All buildings have ventilation ducts. It is easier to install the cables through the ventilation ducts, and as fiber optics are smaller, they need less space and less fire-retardant materials. Fiber optics are lightweight, making them ideal for portable installations.


All the above discussed factors make fiber optic cables a preferred choice for data communications. Added to a well-structured wire network, the optic cables can connect to multiple terminals even beyond its usual connectivity range.

At EMC Tech, we provide a range of EMC testing & product certification services across Australia. We are NATA accredited for RCM, FCC, CE and IC Testing